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Abstract
Measurements of the spatial distribution of bunched crystalline ion beams in the
radio frequency quadrupole storage ring PALLAS are presented for different
ratios of the longitudinal and the transverse confinement strengths.

The length of highly elongated crystalline ion bunches and its dependence
on the bunching voltage is compared to predictions for a one-dimensional
ion string and three-dimensional space-charge-dominated beams. The length
is found to be considerably shorter than that predicted by the models.
Furthermore, the scaling of the length with the bunching voltage is shown
to differ from the expected inverse cube root scaling. These differences can
partially be attributed to the formation of a mixed crystalline structure.

Additionally, a concise mapping of the structural transition from a string
to a zig-zag configuration as a function of the ratio of the confinement strengths
is presented, which in a similar way deviates from the predictions.

PACS numbers: 29.20.Dh, 41.75.−I, 52.27.Gr, 05.70.Fh

1. Introduction

In the PALLAS (PAuL Laser cooling Acceleration System) rf quadrupole storage ring [1],
crystalline ion beams [2–4] have recently been experimentally realized at a beam energy of
around 1 eV [1, 5–7]. Generally, the phase transition to the Coulomb-ordered ‘crystalline’
state, the state of ultimate brilliance, can occur when the mutual Coulomb energy of stored ions
overcomes their mean kinetic energy by about two orders of magnitude. As typical inter-ion
distances amount to the order of 10 µm, beam temperatures in the mK range are required to
fulfil this condition. Therefore, Doppler laser cooling is applied for the efficient reduction
of the longitudinal velocity spread of the ion beam. Providing sufficient confinement, the
transverse ion motion is coupled to the longitudinal motion and cooling of all degrees of
freedom is achieved.
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The PALLAS storage ring has been used for the emulation of synchrotrons [8] mapping
the focusing parameters required to attain and maintain coasting [6, 7] and bunched [9, 10]
crystalline ion beams. For bunched ion beams the ion current is additionally modulated by a
harmonic pseudo-potential in the co-moving system, the so-called ‘bucket’ potential, thereby
splitting and compressing the beam into ‘bunches’. Except for the collective motion of the ions
in the beam, this situation is equivalent to the situation commonly found in linear Paul traps
(see, e.g., [11]). Yet, the length of the bunches can be considerably larger as compared to the
typical situation of a stationary ion crystal in a linear Paul trap, challenging theoretical models
as will be shown. We first recapitulate the experimental methods to create bunched crystalline
ion beams, which have been described in more detail elsewhere [9, 10], and then discuss novel
results on the shape and the structure of these crystalline ion bunches as a function of the
strength of the longitudinal and the transverse confinement.

2. Experimental setup

The PALLAS storage ring resembles a quadrupole ion guide, bent into a circle of C = 2π ×
R = 2π × 57.5 mm circumference [12, 13]. Typically, a radio frequency � = 2π × 6.3 MHz
with an amplitude of Urf = 300 V is applied between the ring-shaped quadrupole electrodes
with an aperture radius of r0 = 2.5 mm. Stored 24Mg+ ions of mass m and charge e then
experience a time-averaged harmonic pseudo-potential �(r) = �0r

2
/
r2

0 with a depth of
�0 = qUrf /8, where q = 2eUrf

/(
m�2r2

0

)
denotes the stability parameter of the Mathieu

differential equation [14] and has a typical value of q = 0.25. This potential transversely
confines the ions along the orbit and leads to a secular frequency ωsec = q�/

√
8.

Furthermore, the longitudinal ion motion can be manipulated by the use of 16 individual
drift tubes. With an effective length of L = 22 mm each, they enclose the whole ion orbit.

Two laser beams, addressing the Doppler-shifted 3s 2S1/2–3p 2P3/2 transition of the 24Mg+

ions, are used for the acceleration of the ions, one co-propagating with the ion beam, one
counter-propagating. During acceleration the frequency ω1 of the first laser is continuously
increased at a tuning rate of 5 GHz s−1. The frequency ω2 of the second laser is kept
fixed, determining the final velocity of the coasting beam of typically v ≈ 2600 m s−1. The
longitudinal velocity spread of the ion beam is efficiently reduced by the friction force that
results from the combination of both accelerating and decelerating laser forces [1, 5–7].

The fluorescence light of laser-cooled ions is detected with a fast photo-multiplier.
Furthermore, time-averaged images of the beam can be recorded with an intensified CCD
video camera. While these images represent a direct measurement of the transverse beam
profile, the longitudinal profile of an ion bunch is measured by recording the photo-multiplier
signal in phase with the bunching voltage [10] applied to one of the drift tubes (as described
below). The spatial ion distribution in the bucket is then derived from the recorded temporal
distribution of fluorescence photons.

3. Bunching of ion beams in PALLAS

A sinusoidal potential at a bunching frequency of ωb ≈ 2π × 40 kHz (harmonic number
h = 6) and amplitude U0 of a few mV is applied to one of the drift tubes of length L for the
control of the spatial longitudinal ion distribution [9, 10]. If the bunching frequency is tuned
to a harmonic number h of the revolution frequency ωrev = 2π × v/C, an ion propagating
with the synchronous velocity vs = Cωb/(2πh) experiences no longitudinal force while ions
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with higher velocities will be decelerated and vice versa [8]. Individual ions oscillate in h
co-moving longitudinal pseudo-potential wells with an effective potential depth [9, 10] of

Ub = 2U0 sin(πhL/C) (1)

with the synchrotron frequency

ωsyn = 2π ×
√

eUbh

2πC2m
. (2)

For the case of bunched beams, the friction force providing the longitudinal cooling can
be generated with a combination of the decelerating force of the counter-propagating laser
beam and the restoring pseudo-force of the bucket [15, 16], again similar to the situation
of laser cooling of stationary ions in the harmonic well of a linear trap. In this regime of
a bunched beam cooled with only the decelerating laser beam at fixed frequency ω2, the
bunching frequency has to be carefully adjusted, so that the synchronous velocity vs comes
to lie slightly below the velocity corresponding to the Doppler-shifted laser resonance (see
also [9, 10]). The synchrotron motion is efficiently damped and the ions are cooled to the
synchronous velocity, but shifted out of the bucket centre by the laser force. Crossing this
resonance condition immediately leads to an inverse situation where the synchrotron motion
of the ions is increased as then ions are driven out of the bucket by the decelerating laser force.

Thus, the experimental procedure used for the attainment of crystalline bunched beams is
the following: to prevent any ion losses due to initial mis-adjustments of the frequencies,
ions are (re-)accelerated by the continuously scanning co-propagating laser beam as for
the previous case of the acceleration of the coasting beam until the fine adjustment of the
bunching frequency ensures efficient cooling by the counter-propagating laser beam inside the
comparatively shallow bucket. Once this point is reached, no ions are lost from the bucket
anymore and the accelerating laser beam can be shut off.

4. Shape and structure of ion crystals in the bucket

Large stationary ion crystals confined in linear Paul traps by harmonic potentials of different
strengths in the transverse and longitudinal directions form spheroids of constant charge
density which can be characterized [11, 17, 18] by their aspect ratio

α = Lb

Db

. (3)

The full longitudinal length Lb and the full transverse width Db refer to the distances of
the outermost ions in the longitudinal and transverse directions. For a comparison with
experimental data of crystalline beams, where single ions are presently not resolved, Db and
Lb have to be replaced by statistical quantities, leading to α∗ = LFWHM/(4σ ). As described
in [6], the full transverse width of the beam is approximated by four times the width σ c of
a Gaussian, from which an overall resolution of the imaging system (here σ 0 = 4.8 µm) is
subtracted according to σ =

√
(σ c)2 − (σ 0)2. The FWHM bunch length [10] LFWHM is used

for the description of the length of the bunch.
A more intriguing image of the spatial distribution of the bunch (similar to the images

of stationary ion crystals) could clearly be acquired by strobing the intensified camera
synchronously with the bunching voltage. Yet, the accumulation of consecutive images
after each revolution of the bunch is very time consuming and therefore requires long-term
stability of the cooling lasers that cannot be guaranteed with the present setup. For an exposure
time of 10 ns per image, the integration time would be of the order of 25 min and thus this
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Figure 1. Longitudinal beam profile (β = 282 × 103, α∗ = 826) showing two consecutive ion
bunches. The parabolic shape of the bunches indicates a space-charge-dominated beam. The
distance of the two bunches is given by �z = C/h. The length of the bunches corresponds to a
compression of �z/LFWHM = 7.6, while the transverse beam radius is 2σ = 9.6 µm.

technique would not allow the kind of systematic investigations presented here. Nevertheless,
the required improvements of the experimental setup are planned to be made in the near future.

In the PALLAS storage ring extremely elongated crystal structures confined in the bucket
potential well with a length of the order of 10 mm and a width of only several µm are
investigated. In this regime the shape of the crystal is no longer adequately described by a
spheroid as in the cold fluid model, where an analytical expression for the dependence of α

on the trap parameter β, the ratio of the transverse to the longitudinal confinement strength,
has been derived [17–19].

Still, the aspect ratio α should depend on β for the case of bunched beams where the
confinement strength is characterized by

β = ω2
⊥

ω2
z

= ω2
sec

ω2
syn

. (4)

The structure of an ion crystal consisting of Nb = N/h particles is uniquely determined
[12, 20] by the dimensionless linear density

λ(z) = n(z)aws aws =
[

1

4πε0

3e2

2mω2
sec

]1/3

(5)

where n(z) = �N/�z denotes the local linear ion density and aws the Wigner–Seitz radius,
which is a measure of the average inter-ion spacing as a function of the strength of the
transverse confinement. For infinitely long ion crystals, only ‘truly’ realized for the case of
coasting beams, a transition from a one-dimensional string of ions into a two-dimensional
zig-zag pattern is expected for λ(z) = λ = 0.71 [20].

5. Longitudinal spatial beam profiles

A typical longitudinal profile of a bunched crystalline beam in the PALLAS storage ring is
shown in figure 1. The inverse parabolic form of the two consecutive ion bunches indicates that
the inter-ion Coulomb repulsion is in equilibrium with the confining forces of the harmonic
longitudinal pseudo-potential and that the shape of the bunch is no longer determined by its
temperature.

Two different models are compared to the experimental results in the following discussion.
In both models, the linear ion density n(z) is well described by an inverse parabola [21], for
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Figure 2. Fluorescence image of the left half of a stationary ion crystal in the storage ring PALLAS
with Nb = 40 ions compared to the corresponding theoretical calculation following James [23].
The string was confined in harmonic potentials in both the transverse and longitudinal directions.
The trap parameter was β ≈ 1340 (ωz = 2π ×15 kHz, ωsec = 2π ×550 kHz). Note that the weak
longitudinal confinement was generated with the drift tubes also used for the bunching of beams.

Figure 3. Enlarged longitudinal profile of the bunched crystalline ion beam presented in figure 1.
The measured profile is compared to a parabolic profile where the length corresponding to a
one-dimensional ion string [21] (almost identical to the one corresponding to a non-crystalline
space-charge-dominated beam [22]) is used.

which one can substitute LFWHM by Lb/
√

2. For space-charge dominated but non-crystalline
bunched beams, Ellison et al [22] derived a total bunch length of

LEllison =
[

ln
( r0

2σ

)
12Nb

e

ε0

R2

Ubh

] 1
3

. (6)

Note that the dependence of the length on the ratio of the aperture radius r0 to the transverse
beam radius 2σ indicates that this model describes three-dimensional ion bunches in a
conducting beam pipe.

On the other hand, the model of Dubin [21] describes a one-dimensional ion string trapped
in a longitudinal harmonic potential. The corresponding total bunch length amounts to

LDubin =
[(

ln(6Nb) + γ − 7

2

)
12Nb

e

ε0

R2

Ubh

] 1
3

(7)

where γ ≈ 0.5772 is Euler’s constant and parameters are adopted for the conditions at the
PALLAS storage ring. Starting from the cold fluid model [17, 18], this approach takes into
account the long-range order of the ion string which is especially relevant for small numbers
of ions (Nb � 200) in the bunch, but gives results for the bunch length similar to those of
equation (6) for Nb of the order of 1000. Equation (7) was shown to be in good agreement
with direct calculations of the ion positions [21, 23]. For illustration purposes, figure 2 shows
an image of the left half of a stationary ion string (Nb = 40) stored in PALLAS. The ion
positions are compared to a direct calculation following James et al [23], nicely describing the
measurement.

In surprising contrast, figure 3 shows a comparison of the longitudinal profile of a bunched
crystalline ion beam (Nb ≈ 1000) with the two models. Compared to equations (6) and (7),
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Figure 4. Deviation from the dependence LFWHM ∝ U
−1/3
b of the FWHM bunch length LFWHM

at a given bunching voltage Ub for a bunched crystalline ion beam (filled stars). The dotted curve
follows the expected U

−1/3
b scaling to illustrate the difference from the experimental result, yet,

the absolute length is fitted to the first data point. For reasons of comparison the bunch lengths
(2σ of a Gaussian profile) of a hot, non-space-charge-dominated beam (open rhombs) have been
added to the plot.

the length of the bunch is about a factor of 2 smaller than expected, considerably increasing
the phase-space density of the ion beam.

At this point, the most obvious difference between the crystalline bunches presented here
and the stationary crystal shown in figure 2 lies in the number of ions involved and in the
corresponding overall length.

Bunch lengths measured at different bunching voltages are presented in figure 4. The
bunch length for a crystalline ion string should depend on the depth of the longitudinal confining
potential as Lb ∝ U

−1/3
b [21], provided no changes in the structure of the crystal, which might

change its compressibility (∝ dLb/dUb), take place during the compression. Reflecting the
harmonic confinement, the same dependence should hold true for non-crystalline space-
charge-dominated beams [22] and for emittance-dominated hot beams. Figure 4 depicts the
deviation from this dependence found in the experiment. At present, this behaviour can only
be attributed to local changes in the crystal structure. In a zig-zag configuration another
degree of freedom transverse to the direction of the beam propagation opens and the ions are
pushed aside by the Coulomb repulsion when the longitudinal confinement is increased. For
sufficiently long crystals, the central part of the crystal can undergo such a transition to a
zig-zag with a rather constant linear density of 0.8 � λ � 0.9, while the rest of the crystal
remains in the string configuration where λ gradually varies with z.

As an illustration, figure 5 shows an image of a stationary ion crystal recorded in the
PALLAS storage ring which exhibits the onset of such a structural transition. The transition is
accompanied by a considerable decrease in the crystal length. An increase in the longitudinal
confinement causes more ions to flip into a zig-zag configuration and the ion crystal becomes
shorter more quickly than expected according to Lb ∝ U

−1/3
b . Yet, the absolute value of the

length and thus the discrepancy with the much larger theoretical value cannot be attributed to
this effect.
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-

Figure 5. Fluorescence image of the left half of a stationary ion crystal with Nb ≈ 68 ions in
the PALLAS storage ring. The gradual transition from a string-like structure on the outside to a
zig-zag inside  the crystal is visible. The inter-ion spacing is comparable to that in figure 2, the trap
parameter is β = 73 (ωsec = 2π × 180 kHz, ωz = 2π × 21 kHz).

-

Figure 6. Mapping of the structural transition of a bunched crystalline ion beam.

6. Mapping the transition from string to zig-zag

Experiments have shown that the threshold value of λ = 0.71, established for the transition
from a string to a zig-zag [20] in infinite systems, also roughly holds for a local transition in
longitudinally confined ion crystals [5, 12]. To investigate this transition in bunched crystalline
beams, careful changes were applied to the rf potential depth Urf and the bunching voltage Ub

to approach the critical trap parameter corresponding to the transition. Thus, each data point
in figure 6 corresponds to a different combination of these voltages chosen independently for
each point to maintain a stable beam. The dotted line connecting the different data points in
figure 6 is solely meant to guide the eye.

Although for a parabolic profile of the linear density n(z), obviously, parts of the
ion crystal can evolve into a zig-zag structure below an average linear density of λ̄ =
(1/Lb)

∫ +Lb/2
−Lb/2 awsn(z) dz = 0.71, a sharp transition was observed at a distinct value of

β ≈ 880 × 103 as depicted in figure 6. The average linear density amounts to λ̄ ≈ 0.83
at this transition point. This structural transition is identified by a sudden broadening of the
width of the beam similar to the case of coasting beams [6]. The transverse beam size changes
significantly when a ‘full’ structural transition from a string to a zig-zag configuration takes
place. For the case of ion bunches, only a minor part is assumed to remain in the string
configuration in contrast to the situation illustrated in figure 5. Previous systematic studies
of the transverse beam size of different crystal structures for coasting beams [6, 7] allow the
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three structural regimes to be distinguished, string, zig-zag and helix, although the transverse
beam size has to be reconstructed from a time-averaged picture, where longitudinal changes
in the crystal structure are smeared out.

Predictions from MD simulations (Nb < 500) [19] and from the cold fluid model [24] for
the trap parameter value at which the transition from a string to a zig-zag should occur exist,
namely

β
(1)

Schiffer(Nb) = 0.395N1.73
b Nb < 500 [19] (8)

and

β
(1)
Dubin(Nb) = (3x1Nb)

2

64(ln(6Nb) + γ − 13/5)
x1 ≈ 2.05 [24]. (9)

The predicted values, βSchiffer(Nb) = 175 × 103 and βDubin(Nb) = 273 × 103 for
Nb = 11 000/6 both differ considerably from the experimental result, which is consistent
with previously published PALLAS data [10].

Further changes in the transverse width were observed for different zig-zag configurations,
leading to the different values of α∗ in figure 6. For certain values of the trap parameter the
beam was found to be unstable, indicated by the cross in figure 6, possibly due to recurring
structural changes from a string to a zig-zag. The size of the error bars refers to the maximum
and minimum values measured and is of the same order of magnitude as the differences in α∗

for the zig-zag structures.

7. Conclusion and outlook

First systematic studies of the length and width of bunched crystalline ion beams were
performed in the PALLAS rf quadrupole storage ring. The dependence of the bunch length
on the bunching voltage has been found to strongly and surprisingly differ from theoretical
predictions for pure crystalline strings. The different scaling with increasing longitudinal
confinement can be qualitatively explained by the gradual formation of a crystal structure
dominated by an ion string, but including a small zig-zag contribution. For these string-like
crystalline bunched beams the absolute bunch length has always been found to be at least
a factor of 2 shorter than that expected from the literature for non-crystalline space-charge-
dominated beams or large one-dimensional ion strings, notably a very favourable effect. Such
a shorter bunch length might even hint at a release of energy related to the phase transition
[25]. Yet, the quantitative dependence of the bunch length on the particle number remains to
be investigated.

Moreover, a sharp transition at λ̄ = 0.83 from a string-like structure of the ion crystal to
a zig-zag has been observed, similar to our previous observations [9, 10], and mapped as a
function of the trap parameter. This trap parameter value of β ≈ 880 × 103 has been found to
be considerably different from theoretical predictions. Since the predictions for the length of
a pure ion string and the value of the trap parameter at the transition from a string to a zig-zag
structure are closely related [24], a final explanation of the obvious discrepances between the
experimental results presented here and the theoretical predictions should include aspects of
the shape and structure of highly elongated crystals as well as of the dynamics of the structural
transition.

For the ongoing investigation of mixed crystalline structures in bunched beams, the
systematic mapping of a wider range starting from an unambiguous string to a final zig-zag
structure is foreseen. It is planned to further investigate the Lb ∝ U

−1/3
b scaling and its

dependence on the ion number Nb for bunched crystalline ion strings. Additionally, MD
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calculations are currently prepared to investigate the string to zig-zag transition in a bunched
ion beam of Nb � 1000.
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